
Practical Application of Model Checking

in Software Verification

STREAM: FOUNDATIONS AND METHODOLOGY

MINI TRACK: MODEL CHECKING

Klaus Havelund 1. and Jens Ulrik Skakkebeek 2

t NASA Ames Research Center, Recom Technologies, Moffett Field, CA, USA

havelund@ptolemy.arc.nasa.gov

http://ic-www.arc.nasa.gov/ic/projects/amphion

2 Computer Systems Laboratory, Stan_rd University, Stan_rd, CA 94305, USA

jus@cs.stanford.edu

http://verify.stanford.edu

Abstract. This paper presents our experiences in applying the JAVA

PATHFINDER (JPF), a recently developed JAVA to SPIN translator, in the

finding of synchronization bugs in a Chinese Chess game server appli-

cation written in JAVA. We give an overview of JPF and the subset of

JAVA that it supports and describe the abstraction and verification of

the game server. Finally, we analyze the results of the effort. We argue

that abstraction by under-approximation is necessary for abstracting suf-

ficiently smaller models for verification purposes; that user guidance is

crucial for effective abstraction; and that current model checkers do not

conveniently support the computational models of software in general

and JAVA in particular.

1 Introduction

Current trends in software and hardware development indicate that low-cost,

embedded systems will soon permeate our every day living. Embedded, reac-

tive software applications will be ubiquitous, and distributed, networked servers

will provide instant information access. Software in both embedded processors

and server systems will increasingly be multi-threaded, since it must respond to

events from the user and environment at any time. In both cases, bugs in the

software can be costly, as the software is distributed in many copies.

Finding concurrency bugs in multi-threaded software by testing is a diffi-

cult task, since it not only involves providing particular input test data but

also requires the underlying operating system scheduler to schedule the different

threads in a particular way, in order to expose the bug. Even worse, the thread

schedulers for different platforms may vary and bugs may appear in actual de-

ployment that were not exposed on the test platform.

" Contact: Phone: (650) 604-3366, Fax: (650) 604-3594

Model checking has increasingly gained acceptance within hardware [5, 16, 2,

1] and protocol verification [14] as an additional means to discovering bugs. In

contrast to testing, it exercises the model to be verified in an exhaustive fashion.

To check for concurrency bugs, it will exercise the threads in all possible inter-

leavings, and is thus able to find the bugs independently of particular scheduling

algorithms.

However, verifying programs is different from verifying hardware or protocols:

The state is often much bigger and the relationships harder to understand be-

cause of asynchronous behavior and a more complicated, underlying semantics.

The size and complexity of software pushes current formal verification technol-

ogy beyond its limits. It is therefore likely that effective application of model

checking to software verification will be a debugging process where smaller, se-

lected parts of the software is model checked. The process will draw on multiple

abstraction and verification techniques under user guidance. This process is cur-

rently not well understood.

In order to investigate the challenges that software poses for model checking,

we have applied the JAVA PATHFINDER (JPF) [13], a recently developed JAVA to

Spin translator, in the verification of a Chinese Chess game server application l

written in JAVA [9]. We performed the abstractions by hand and translated the
simplified JAva program to Spin using JPF. Although the example is not big (16

classes and about 1400 LOC), it is still non-trivial and is not written with formal

verification in mind. In the process, we developed a suspicion of a deadlock bug in

the software which was confirmed using Spin. Spin also produced an even simpler

error scenario than we had found ourselves. Currently, we have not verified the

whole application (it is questionable if it is at all useful) but we will try other
parts of the program that show potential for bugs.

This paper provides an overview of JPF and presents our experiences and

lessons learned. We argue that (1) abstraction by under-approximation is neces-

sary for abstracting sufficiently Smaller models for verification purposes, (2) user

guidance is crucial for effective abstraction, and (3) that current model checkers

do not conveniently support the computational models of software in general

and JAVA in particular.

Related work is described in Section 2. The JPF tool is introduced in Section 3

and the application to the game server is described in Section 4. We analyze the
results in Section 5 and conclude with a discussion in Section 6.

2 Related Work

Few attempts have been made to automatically verify programs written in real

programming languages. The most recent attempt we can mention is the one

reported in [3], which also tries to model check JAVA programs by mapping into
PROMELA. This work does, however, not handle exceptions, nor polymorphism

(passing, e.g., an object of a subclass of a class C to a method requiring a C object

1 http://www.cchess.net

asparameter).Theworkin [4]definesa translatorfromaconcurrentextension
of averylimitedsubsetof C+÷ to PROMELA.Thedrawbackof thissolutionis
that theconcurrencyextensionsarenotbroadlyusedbyC++ programmers.

TheVeriSofttool [8]is a anexhaustivestate-spaceexplorationtoolfor de-
tectingsynchronizationerrorsbetweenprocesses.Asa majoradvantage,it also
verifiestheactualcode.However,sincethestatespaceis toolarge,thevisited
statesarenot storedin the verificationprocess.Eachtimea newbranchof
possibleexecutionis verified,it hasto rerunfromthebeginning.Furthermore,
eachprocessis treatedasa blackboxandpropertieshaveto bespecifiedat the
processinterfaces.In contrast,modelcheckingallowsformoreefficientverifica-
tion (sincestatesaresavedalongtheway)andforspecifyinginternalprocess
properties,but requiresmoreabstraction.It isstill unclearwhichhasthemost
advantages.

Dataflowanalysishasbeenappliedto verifylimitedpropertiesofconcurrent
programs,incl.JAVA[19,18].Thesemethodsareusefulforrulingoutcertainbe-
haviorsoftheconcurrentsystembut aremuchlessprecisethanmodelchecking.
However,aswewill arguelater,theycanpotentiallybeusefulin identifying
problemareasfor verificationbystatespaceexplorationmethods.Corbett[6]
describesatheoryoftranslatingJAVAto atransitionmodel,makinguseofstatic
pointeranalysisto aidvirtual coarsening, which reduces the size of the model.

3 The JAVA PATHFINDER

JPF [13] is basically a translator that automatically translates a non-trivial sub-

set of JAVA into PROMELA, where PROMELA is the programming language of the

SPIN verification system [14]. SPIN supports the design and verification of finite

state asynchronous process systems. PROMELA is a simple multi-threaded pro-

gramming language with non-deterministic guarded commands. Processes com-

municate either via shared variables or via message passing through buffered

channels. Properties to be verified are stated in the linear temporal logic LTL.

The SPIN model checker can automatically determine whether a program sat-
isfies a property, and in case the property does not hold, it generates an error
trace.

JPF allows a programmer to annotate his JAVA program with assertions and
verify them using the SPIN model checker. In addition, deadlocks can be identi-

fied. Temporal logic properties are specified using calls to methods defined in a
special class (the Verify class), all of whose methods are static.

A significant subset of JAVA is supported by JPF: dynamic creation of objects

with data and methods, class inheritance, threads and synchronization primi-

tives for modeling monitors (synchronized statements, and the uait and notify

methods), exceptions, thread interrupts, and most of the standard programming
language constructs such as assignment statements, conditional statements and

loops. However, the translator is still a prototype and misses some features,

such as packages, overloading, method overwriting, recursion, strings, floating

pointnumbers,staticvariablesandstaticmethods,somethreadoperationslike
suspendandresume,andsomecontrolconstructs,suchasthecontinuestate-
ment.In addition,arraysarenotobjectsastheyarein JAVA,but aremodeled
usingPROMELA'Sownarraysto obtainefficientverification.Notethat many
of thesefeaturescanbeavoidedby smallmodificationsto the input code.In
addition,thetoolis currentlyimproved.

DespitetheomissionsweexpectthecurrentversionofJPFto beusefulona
largeclassof software.Thegameserverapplicationdescribedin Section4fits
in thecurrentsubsetwitha fewmodifications.

WeshallillustrateJPFwith a small,but non-trivial,example.Theexam-
pleis inspiredby oneof fiveconcurrencybugsthat werefoundin aneffortby
NASAAmesto verify,usingSPIN, an operating system implemented in a multi-

threaded version of COMMON LIsP for the DEEP-SPACE 1 spacecraft [12]. The

operating system is one component of NASA's Remote Agent [20], an experi-
mental artificial intelligence based spacecraft control system architecture. The

bug, found before launch, is concerned with lock releasing on a data structure
shared between several threads.

3.1 The Lock Releasing Problem Cast into JAVA

The Main Code The operating system is responsible for executing tasks on

board the space craft. A task may for example be to run a camera. A task

may lock properties (states to be maintained) in a lock table before executing,
releasing these locks after execution. For example, one such property may be

to "keep the thrusting low" during camera operation. For various reasons tasks

may, however, get interrupted during their execution, and the particular focus

here will be on whether all locks always get released in that case.

Figure 1 shows the Task class. Its constructor (the method with the same

name as the class) takes three arguments: a lock table t which contains the locks,

a property p (here just an integer) to be locked before the activity is executed,

and the activity t to be executed by the task. An Activity object is required

to provide an activity() method which when executed will perform a given

task. Note that this is the way that JAVA supports higher order methods taking

methods as arguments.

The run method of the Task class specifies the behavior of the task; this

method has to be part of any Thread subclass. The behavior is programmed

using JAVA'S exception construct, the general form of which is:

try S1 catch(E x) $2 finally $3

where each S 1, $2, $3 is a block (a statement or a sequence of statements enclosed

by {...}) and E is an exception type (class), and x is a variable. The body S1 of

the try statement is executed until either an exception is thrown or it finishes

successfully. If an exception is thrown, the catch clause is examined in order to

class Task extends Thread{

LockTable t; int p; Activity a;

public Task(LockTable t,int p,Activity a){

this.t - t; this.p - p; this.a = a;

this.start();
}

public void run(){

try {t.lock(p,this);a.activity();}

catch (LockException e) {}

finally {t.ralease(p);};

Fig.I.Task Execution

find out whether the thrown exception is of the corresponding class E or of a
subclass thereof. If this is the case the corresponding block $2 is executed with

x being bound to the thrown exception. If the exception is not of type E, the

exception "flows out" of the try statement into an outer try that might handle

it. In any case, the finally clause $3 is always executed. This happens no matter
how the completion was achieved, whether normally, through an exception, or

through a control flow statement like return. The code in Figure 1 shows how

the lock is set, the activity is executed, and then finally, the lock is released.

Figure 2 shows the JAVA class LockTable, which models the table of all

locks. It provides an array mapping each property (here a number between 0
and 2) into the task that locks it, or null otherwise. The method lock locks a

property to a particular task, throwing an exception if the property has already

been locked. The release method releases the lock again. These methods are

defined as synchronized to obtain mutual safe access to the table when executed.

A LockTable object will then work as a monitor, only allowing one thread to
operate in it, that is: call its methods, at any time.

A Test Environment Normally an exception is thrown explicitly within a

thread using the throw(e) statement, where e is an exception object (a normal

object of an exception class which may include data and methods). However, one

thread S may throw a ThreadDeath exception in another thread T by executing

T. stop(). This is exactly what the Daemon task shown in Figure 3 does. In fact,

the daemon together with the Main class with the main method representing

the main program constitutes an environment that we set up to debug the task
releasing. The daemon will be started to run in parallel with the task, and will

eventually stop the task, but at an unspecified point in time. The task is started

with the property 1 and some activity not detailed here. The assert statement

is "executed" after having joined the task, when the task terminates that is. The

assertion states that the property is no longer locked.

class LockTable{

Task[] table = new Task[3];

public synchronized void lock(Ant property,Task task)
throws LockException{

if (table[property] != null){

LockException e = new LockException();
throw(e);

);

table[property] = task;
)

public synchronized void release(Ant property){
table[property] = null;

}

Fig.2. The Lock Table (LockEzceptionisdefinedelsewhere)

The assert statement is expressed as a call to the static method assert in

the Verify class shown in Figure 4. The fact that this method is static means

that we can call it.directly on the class without making an object instance first.

It takes a string argument being printed if the assertion, given as the second

Boolean argument, is violated. The body of this method is of no real importance
for the verification since only the call of this method will be translated into a

corresponding PROMELA assert statement. A meaningful body, like raising an

exception for example, could be useful during normal testing though, but it
would not be translated into PROMELA.

One can consider other kinds of Verify methods, in general methods corre-

sponding to the operators in LTL, the linear temporal logic of SPIN. Since these

methods can be called wherever statements can occur, this kind of logic repre-

sents what could be called an embedded temporal logic. As an example, one could

consider statements of the form: Verify. eventually(year == 2000) occurring

in the code. The major advantage of this approach is that we do not need to
change the JAVA language, and we do not need to parse special comments. JAVA

itself is used as the specification language. Note, that at this point, only the

assert method is supported.

The Error Trace When running the SPIN model checker on the generated

PROMELA program, the assertion is found to he violated, and the error trace

illustrates the kind of bug that was identified in the Remote Agent. The problem

is that although the main activity of the task is protected by a try ... finally

construct such that the lock releasing will occur in case of an interrupt (stop),

the finally construct itself is not protected the same way. That is, if the task

is stopped when within the finally construct, for example just before the lock

releasing, the releasing never gets executed. The generated error trace shows

exactly this behavior. This is in folklore called the "unwind-protect" problem in

LISP, obviously also present in JAVA, and causing real bugs as illustrated here.

class Daemon extends Thread{

Task task;

public Daemon(Task task){

this.task - task;

this.start();

}

public void run(){

task.stop();

}

}

}

class Main(

public static void main(String[] args){

LockTable table - nee LockTable();

Activity activity = new Activity();

Task task = new Task(table,l,activity);

Daemon daemon = new Daemon(task);

try {task.join();} catch (InterruptedException e) {};

Verify.assert("Released",table.table[l] == null);

Fig. 3. Environment

class Verify{

public static void assert(String s,boolean b){}

}

Fig. 4. The Verify Class

3.2 Translation to PROMELA

This section shortly describes the translation of JAVA into PROMELA. A more

detailed description of the translation can be found in [13].

Classes and Objects Each class definition in JAVA introduces data variables

and methods. When an object of that class is created with the new method,
the Java Virtual Machine lays out a new data area on the heap for the data

variables. Since PROMELA does not have a dynamic heap, a different solution
has to be adopted. For each class _in integer indexed array of some fixed static

size is declared, where each entry is a record (typedef in PROMELA) containing
the variables of the class. Hence, each entry represents one object of that class. A

pointer always points to the next free "object" in the array. An object reference

is a pair (c,i), where c is the class and i is the index of the object in the

corresponding array (the pair is represented as the integer c* 100+i). Inheritance

is simply modeled by text inclusion: if a class B extends (inherits from) a class A,
then each entry in the B array will contain A's variables as well as B's variables.

Methods JAVA method definitions are simply translated into macro defini-

tions parameterized with an object reference - the object on which the method

is called. That is, a PROMELA program is allowed to contain macro definitions,
which are expanded out where called. For example, when a thread calls a method

on an object, it "calls" the macro with the object identifier as parameter. The

drawback with macros is their lack of local variables. Hence, JAVA method local

variables have to be translated to global variables (within the calling thread),

prefixed with their origin (class and method). PROMELA has recently been ex-
tended with inline procedures (motivated by some of our work presented in [12]),

and these could be used instead, although it would not make a difference in the

principles.

Threads Threads in JAVA are naturally translated to PROMELA processes. That

is, any class being defined as extending the Thread class, such as Task and
Daemon in the example, is translated to a proctype. The body of the process

is the translation of the body of the run method. The main program (the main

method) will be translated into an init clause in PROMELA, which itself is a

special process.

Object Synchronization JAVA supports mutually exclusive access to objects

via synchronized methods. That is, if a thread calls a synchronized method on an

object, then no other thread can call synchronized methods on the same object as

long as the first thread has not terminated its call. We model this by introducing
a LOCK field in the data area of each object, in this case most interestingly in

the LockTable array. This field will either be null if no thread has locked the

object, or it will be equal to the process identification of the thread (PROMELA

process) that locks it (via a call to a synchronized method). Some of the macros

modeling locking, unlocking and synchronization are shown in Figure 5.

#define LockTable_release(obj,property)

synchronized(obj,LockTable_set_table(obj,property,null))

#define synchronized(obj.stmt)

if

:: get_LOCZ(obj) == this -> stmt

:: else ->

lock(obj);

try(stmt) unless {d_finally(unlock(obj))}
fi "

#define lock(obj)

atomic{

get_LOCK(obj) == null ->

set_LOCK(obj,this)}

#define unlock(obj)

set_LOCK(obj,null)

Fig. 5. Synchronization Macros

The macro LockTable..release isthe translationof the release method in

the LockTable class.It executes the body of the method (a statement) with

synchronized accesstothe object.The synchronized macro executes the state-

ment directlyifthe lock isalready owned by the thread (equalto this), and

otherwise itlocks the object and executes the statement, finallyreleasingthe

lockafteruse.The lock macro setsthe lock to this as soon as itgetsavailable

(equalsnull - note that expressionsin PROMELA are blocking as long as they
evaluate to false).

Exceptions One of the major capabilitiesof the translatoristhat ithandles

exceptions.Java exceptionsare complicated when consideringallthe situations

that may arise,such as method returns in the middle of try constructs,the

finally construct,interrupts(which are exceptionsthrown from one thread to

another) ofthreads that have calledthe wait method, and the factthat objects

have to be unlocked when an exception isthrown out ofa synchronizedmethod.

PROMELA'S unless construct seems relatedto an exception construct,except

for the fact that itworks "outsidein" insteadof "insideout", the latterbeing

the case for JAVA'S try construct.That is,suppose a JAVA program contains

two nested try constructsas indicatedin the leftpart of Figure 6.

try{

try(S1) catch (E x)(S2_ Sl unless (catch(exn_E,x,S2))
))

catch (E y){S3_ unless _catch(exn_E,x,S3).

Fig.6. ExceptionsinJAVA (le_)and PROMELA (right)

If S1 throws an exception object of class E, then this exception should be

caught by the inner catch statement, and $2 should be executed. On the right

hand side of the figure is a simplified version of how we model exceptions in

PROMELA. However, with the traditional semantics of the unless construct,
the outermost catch would be matched, and $3 would be executed. Gerard

Holzmann, the designer of SPIN, implemented a -J (J for JAVA) option giving
the needed "inside out" semantics. Now, in the data area for a thread, in addition
to the LOCK variable mentioned earlier, there is also an exception variable EXN.

Throwing an exception, an object that is, is now modeled by setting the EXN

variable to contain the exception object reference, and this will then trigger

the unless statements. Even with this modification, the translation is quite
elaborate.

4 A Game Server Application

4.1 Background

We have applied JPF to the verification of a game server for Chinese Chess,

developed by An Nguyen, a Stanford student. The code is an older and simpler

versionofthecodethatiscurrentlyrunning.It wasusedfor3weeksandwasnot
writtenwith formalverificationin mind.Thecodewaslaterrewrittenbecause
it wasunstableanddeadlockedtoofrequently.

Compared to industrial applications, the server code is fairly small: it consists
of 11 JAVA classes of about 800 LOC in total. The client code is another 5 classes

and 600 LOC. However, as we shall describe below, the size of the code does not

give an accurate indication of the complexity of thread interaction.

As expected, even though it is relatively small, the state size still drastically

exceeds the limits of any model checker. It is possible that the example is man-

ageable by tools like Verisoft [8]. This is, however, besides the point: we are

using the application to investigate the limits and trade-offs for model checking,
as well as "studying viable approaches to abstraction.

4.2 Overview of the Code

The overall code is divided into server side .code and client side code. The client

code consists of JAVA Applets that are used to display the game boards, the

game pieces, and to relay the user commands to the game server. There is no

direct communication between players. All communication between players is
done via the server.

The multiple players and game boards are naturally handled by a multi-

threaded JAVA architecture in the server code. Although the client side code

in effect is also multi-threaded to handle multiple requests from the user, the

multi-threading is hidden in the browser application and each individual Applet
is written as sequential code. We focus on the server code and leave verification
of multi-threaded user-interface code to future work.

Threads The thread structure is illustrated in Figure 7. At any point in time

several game boards can be active, each served by a ServerBoard thread. For

each participant of a game there is a Connection thread to handle the com-
munication between the ServerBoard and the network connection associated

with the player. Each ServerBoard can have multiple Connections associated

with it (2 players and multiple observers). Inter-board communication mes-

sages are stored in a FIFO queue Server0bjectQueue and handled by the

Server0bjectHandler thread. ServerBoard threads are the only producers of
messages, and Server0bj ectHandler is the only consumer.

Server is the main thread. It handles initialization and contains the main

data structures of the server. Finally, there are two kinds of "vulture" threads

for cleaning up global data structures that become obsolete when players log
out: Server has an associated Server%'ulture thread, and each ServerBoard
thread has an associated ConnectionYulture.

Commands A player has a predefined set of commands that can be sent via

the network to the server. When a command arrives, it is stored in a FIFO

queue in the associated ServerBoard. The ServerBoard thread then processes
the commands one at a time.

Scrv_ Seckct

h

Fig. 7. A simplified illustration of the system. The boxes with rounded edges denote
threads, the square boxes denote non-thread objects. For simplicity, we have not shown
the vulture threads. In this example, ServerBoard 0 has three players associated with
it, ServerBoard 1 has one. The arrows indicate the communication patterns between
the different threads.

The commands can be grouped into three classes: game commands, admin-
istration commands, and communication commands. Game commands are used

to move the pieces around the board and to stop a game. Administration com-

mands are used to create new boards, move between them, and log out. Finally,
communication commands are used to communicate between the players, either

to a few ("whisper") or to a larger crowd ("broadcast"). There are 12 different
commands.

Each time a move is made, the other players in the game are notified by the
ServerBoard broadcasting the information to its Connections.

When a player creates boards, moves between boards, leaves the game, or
sends out a global broadcast, the command is read by the ServerBoard and then

stored in Server0bjectQueue for processing by Server0bjectHandler, which

processes the commands one at a time. Server0bjectHandler handles global
broadcasts by sending local broadcast commands to each of the ServerBoard
threads.

4.3 Abstraction

Since it was obvious that the code was too large to be verified by JPF directly,
we started a manual abstraction process. The obvious challenge was to decide

what parts of the software to abstract away. We did it in a two stage process.
First, since we were interested in the synchronization bugs, we decided to remove

all the code that was related to the Chinese Chess game itself. As long as the

synchronizationandcommunication"skeleton"wasleft intact,theparticular
detailsof thegamewerenotimportantfordetectingsynchronizationerrors.

Second,in theprocessof verifyingthegameserver,weformedanideaof a
potentialdeadlockin thecodebystudyingtheorderinwhichthreadsobtained
locksandaccessedshareddata.However,wewerenotpositivethatthedeadlock
waspresentuntil it wasdemonstratedbythemodelchecker.Thesuspicionof
a deadlockwasextremelyhelpfulin guidingourabstractionprocessto finda
deadlockquickly.Withouttheguidance,wewouldhavebeenhesitanttoabstract
awaytoomuchdetail,in fearofabstractingawaypotentialerrorscenarios.

Themanualabstractionprocesswasfocusedondemonstratingthepotential
deadlockandbrutallycutawaybigchunksoftheprogram,usingthe"meat-axe"
techniqueasdescribedin [12].Weappliedanumberoftechniquessimultaneously.
In retrospect,theycanbedividedin a numbercategories,asdescribedin the
following.

Static Slicing Givena markingof a statementin theprogram,staticslicing
techniques[22]will producethesubsetoftheprogramthat correspondsto the
cone-of-influence. In backward slicing, the output is the part of the program that

potentially can influence the values of the variables at the statement of interest.
In forward slicing, the output is the part of the program that is potentially

influenced by the marked statement.

Static slicing is traditionally motivated by classical compiler theory such as

dead-code elimination and debugging. For verification purposes, it can be used to

remove the part of code that is potentially irrelevant to the verification task. We

used forward slicing in our verification. The relevant code was all the code that

was not directly game related. We marked irrelevant variables, methods, and

classes, and used this as a guidance to (manually) forward-slice the program
from the unmarked variables. For example, the Board class contains the data

structures related to the Chinese Chess board and the positions of the pieces

and was removed; methods related to communication with the player process

were also removed; and fields containing a player's r61e in the game were likewise
removed. Of the 11 server code classes, two of them could be removed fully.

Backward slicing could also potentially be of use in verification. However, as
we shall describe later, the deadlock scenario that were were interested in were

a combination of thread interaction. Marking a particular statement involved in

the deadlock scenario would have given a slice that was too large/imprecise for

our purpose.

Forward slicing in isolation turned out not to be of much use, however. It
was too conservative and thus included irrelevant code in the potential slice. We

combined it with more approximate methods to achieve smaller models.

Approximations of a program are simpler models of the program, where the

set of possible behaviors have been altered. In the verification we used both

over-approximations and under-approximations.

Over-Approximations Over-approximations are obtained from the original

program by introduction of non-determinism in the control flow such that the

abstracted model will exhibit more behaviors than the original program. For

instance, when variables used in an if-then-else condition have been abstracted

away, the whole condition can be replaced by a non-deterministic choice. Over-

approximations are sound in the sense that when checking safety properties, if

no bugs are found in the abstracted model, no bugs exist in the original program.

Counter examples, on the other hand, are not necessarily true counter examples

in the original model.

Over-approximations were used many times in the abstraction of the game

server code. We illustrate this with two examples.

First, it was useful to abstract the control conditions marked in the slicing
process. For instance:

if (...something game related...) then (

server .broadcast (...) ;

was changed to

if (nondet.flag) then (

server, broadcast(...) ;

°..

where nondet, flag is a flag in a new class NonDet that is non-deterministically

set and reset by the model checker in all possible interleavings with other threads.

Second, we abstracted the types of messages that the threads pass around
to a few. The messages are encoded in strings, where the first characters of
the string contains the command, e.g., "/broadcast", "/open", and "/join".
ServerBoard and ServerObjectHandler determine the type of messages by
looking at this string prefix. Typically, this is done in a nested if-then-else struc-
ture:

if (line.startswith("/broadcast") then {

..°

} else if (line.startswith("/talk") then (

...

board, processCormnand(...) ; _.

} else if (line.startswith("/vhisper") then (

board .broadcast (...) ;

°•.

} else _ ...

We abstracted the message strings into a record with a type and a value. From

code inspection, we found 3 commands that were related to the concurrency
behavior we were interested in pursuing and mapped the message type into
something equivalent to an enumerated type 2 with values broadcast, open,
join, and other. The latter was introduced by us to capture the remaining
types of commands. The nested control structure was then modified to be

if (line.type=broadcast) then {

) else if (line.type=other) then {

if (nondet.flag) then board.processCommand(...);

if (nondet.flag) then board.broadcast(...);

) else (...
)

where non-determinism was introduced to model all possible behaviors of exter-

nal events associated with the commands mapping to other.

This last abstraction is a form of abstract interpretation [7] where the user
decides which behavior to keep in the collapsed code. Having an abstract inter-

pretation tool available would be a significant help. However, this an example
where user interaction is crucial.

Under-Approximations Under-approximations ave obtained by removing code

(and state that it depends on) from the program, with the effect of reducing the
possible behaviors of the original program. Under-approximations may not be

sound for safety properties, since the code that is removed could be causing

bugs in the original program - bugs that are not caught when verifying the
abstract model. However, when checking safety properties, if a bug is found in

the under-approximation, it will also be present in the original model. Under-

approximation is a very useful technique when narrowing the search space to a
particular part of the code.

We used under-approximations many times in the game server verification.

First, an obvious under-approximation was to initially ignore all exceptions of
the program, including all the exception handling. In the part of the server code

that we were interested in, the exception handling was of little importance. Sec-
ond, initially we limited the number of threads to two ServerBoard threads

and two Connection threads; and the number of messages from the players to

consider were limited to 3. Third, we inserted 3-4 extra synchronization points

to sequentialize the thread behaviors. This limited the number of possible in-

terleavings that Spin had to consider and more quickly guided it towards the
deadlock scenario.

2 We implemented this using the naturals and constants representing the elements.

4.4 Verification

We combined the abstracted JAVA classes into a file, translated it using the
JPF, and tried to run it through Spin. It took several more cycles of abstrac-

tion before the model was sufficiently manageable for Spin to find the deadlock

bug. We inserted JPF print statements in appropriate piaces in the JAVA code.

This information made it easy to interpret SPIN'S Message Sequence Chart [14]
description of the counter example scenario.

The bug we confirmed was a deadlock caused by cyclic waits between a

number of threads. It involved only three threads to cause the deadlock. Using
Spin we were able to find an unknown and significantly simpler deadlock scenario

with two threads. We will present this simpler example below.

The deadlock may occur when the Server0bjectQueue becomes full. It hap-

pens when a ServerBoard processes incoming messages from its Connections,

while the Server0bjectHandler wants to broadcast a message to the same con-
nections.

The deadlock, illustrated in Figure 8, may arise as follows: The ServerBoard

thread has obtained exclusive access to its connections by locking the connect ions

vector, which stores references to the connections. Next, it goes through a loop
where it processes the incoming connection messages, one at a time. Some of the

messages must be processed by Server0bjectHandler and the ServerBoard

thread will therefore want to put these messages in the Server0bjectQueue.

However, if the queue runs full in this process it will busy-wait on the queue,
while holding the lock on connections.

If Server0bj ectHandler is simultaneously processing a command that causes

a broadcast of a message to the connections of the ServerBoard thread, it will

try to obtain the lock on connections by a synchronize. However, the lock
will never be released by ServerSoard and a cyclic wait has been established.

connections

ServerObjectQueae

Fig. 8. Deadlock sca_io: ServerSoard waits for a free slot in the queue, and
Server0bjectHandler waits for the lock on connections to be released. Dashed lines
indicates wait, the solid line indicates the lock that has been obtained. X and Y are

the messages waiting to be processed.

Notethat thedeadlockis causedby a simultaneouswaitona JAVAlock,
usingthesynchronizedstatement,anda busywaitonthequeue.Thecodefor
enqueueinganddequeueingwaswrittenbythedeveloperhimselfandisnotpart
oftheJVM.

Theverificationitself tooka monthtill thebugwasconfirmed.However,
duringthisperiodmuchtimewasusedonunderstandthecodeandimproving
theJPFto handlethesubsetthat thegameserveruses.In futureapplications
of theJPF,thiswill bereducedsignificantly.

Currently,wehavenotyetcompletedtheverificationofallpartsofthecode.
By studyingthedependencies,however,wearenot convincedthat thereare
moredeadlocksto befound,althoughthis is theopinionof thedeveloper.

5 Analysis

Formal Verification as a Debugging Process As illustrated above, success-

ful application of model checking in program verification will involve an iterative

process of abstraction and verification and will draw on multiple techniques for

abstracting manageable models from the original program. The sheer size and

complexity of the original program pushes current verification technology to its
limits and the goal of the abstraction process is to fit parts of the verification
problem within boundaries of feasible verification.

User-interaction, potentially aided by heuristics, is crucial for effective appli-
cation of the abstraction techniques. Without restrictions on the way the code is

written, it is not likely that abstractions can be fully automated. For instance,

it is not likely that a tool could automatically recognize that the strings that en-

code communication messages have a certain pattern and can be abstracted into

a record with a "type" and "data" field, where the type itself is an enumeration

type. It is possible, however, that automatic abstraction techniques suggested

by Graf and Saidi [10], extended with string pattern matching, could be applied
to determine the enumeration type.

Alternatively, code annotations could provide hints to the abstraction tool.

This is a way of capturing the higher-level understanding of the programmer at
the time of development. For instance, the game server code could contain infor-

mation that would guide an abstraction tool to understand the strings that are
being passed around as actual message types. Alternatively, predefined coding

styles in the form of design patterns could be recognized by an abstraction tool.

We imagine an abstraction framework that supports the abstraction tech-
niques, much in the form that theorem provers today support the verification

engineer. Effective debugging using such an environment will be guided by user

experience, heuristics, and automated static analysis techniques. These will be

used to focus on different classes of bugs separately. For each class of bugs,

an effective way of controlling verification complexity is to initially narrow the

model behaviors to a manageable size, followed by gradual expansion of the set
of behaviors.

In theprocessof verifyingthegameserver,it quicklybecameobviousthat
automatedguidanceisessentialfortheabstraction/verificationiterationto suc-
ceed.Under-approximationsremovebehaviorsfromtheoriginalmodelandwith-
outafocus,theverificationengineermightbehesitantto performsuchabstrac-
tionsin fearof removingpotentialbugscenarios.Automatedguidancecould
guidetheeffortto certainpartsof thesoftwarethat ispotentiallybuggy.

Staticanalysissuchasdataflowanalysis[19,18],etc.couldbeusefulhere.
However,aswehaveseenabove,deadlockscenarioscanoccurnotonlywith
cyclicwaitsonlocks,butalsocyclicwaitsondata,suchasbuffers.Statictech-
niquesmustbeableto recognizesuchsituations.

In contrastto finitespecifications,criteriafor decidingwhento stopthe
debuggingprocessareimportant.In manyapplications,thenumberof threads
thatcanbestartedandobjectsthatcanbecreatedis inprincipleonlyboundby
thethewordsizeandthesizeofthememoryontheservercomputer.Findingand
provingtheminimumnumberofprocessesnecessaryfora "full" verificationisa
difficulttaskin thepresenceofcomplexsoftwarearchitectures.It isquestionable
if thisis a at all a feasibleapproachwhenverifyingbigsoftwarearchitectures.
It mightevenbethat thesizeandspeedoftheverificationhardwarewill limit
thenumberof processesbeforetheminimumisreached.

Abstraction TechniquesAsdescribedabove,under-approximationswerenec-
essaryto narrowdownthe searchspaceto focuson the bugsthat wewere
interestedin finding.Thisconfirmsthe experiencesfrom theRemoteAgent
verification[12],thatover-approximationtechniques(suchasabstractinterpre-
tation[7])donotproducesufficientlysmallmodels.Under-approximationscan
beobtainedbyprogramspecializationsuchaspartialevaluation[15]andother
programspecializationtechniques[11],aswellasbytakingadvantageofdomain
specificinformationprovidedby theuser.Othertechniquesweusedwerelim-
iting thenumberof tasksandinsertingextrasynchronizationto sequentialize
taskexecution.Thiscutdownthesearchspacesignificantly.

Sinceweareapproachingtheverificationasadebuggingprocess,abstraction
algorithmsthat coveronlysubsetsoftheprogramminglanguagearealsopoten-
tially useful.It isnoteworthythat thecodeof eachthreadandmethodin the
gameserverisnotverycomplicated.Thereis,forinstance,norecursionorcom-
plicateddatastructures.Thecomplexityinsteadstemsfromtheuseofmultiple
levelsof threadsthat communicateandinteractin complicatedcommunication
patterns.

Oneofthedecisionstomakein theabstractionprocessisdecidingthebound-
ariesof theprogramto beverifiedh:ndhowto modelits environment.Forthe
gameserver,the obviousboundarieswerethenetworkinterface.However,in
othercasesthecorrectnesspropertiesmaybespecifiedin termsof theclient
applications.In thiscase,thenetworkneedsto bemodeled.Otherenvironment
modelingcomesinwhenthesoftwareusespre-definedlibraries.Thegameserver
code,for instance,usestheJAVAYector class. By studying the JVM spec we
were able to write simple stubs that modeled the class sufficiently for our use. Iri

general,suchenvironmentmodulesmustbepredefinedto savetile verification
engineertimeandeffort.

Verification Oncetheprogramabstractionactivityends,JPFisapplied,and
theresultingPROMELAprogramismodelcheckedbySPIN.Verifying the game
server using the JPF translator pushed the limits of SPIN, especially in terms of

the size of the C code that SPIN generates from the resulting PROMELA program,
sometimes causing gcc to fail. The reason for this is essentially the mismatch in

concepts between the model checker and the programming language concepts.

This is in spite the fact that SPIN appears to be one of the better suited target
model checkers due to its dynamic process creation construct and asynchronous

(interleaved) process model in particular - and flexible C-like programming lan-
guage like notation in general. Generally, one has to model the Java Virtual

Machine in the model checker, and the translator has resemblance to a compiler.

First of all, current model checkers have been constructed with hardware

and protocols in mind and require static memory allocation. That is, they do

not support the dynamic nature of object oriented software, more specifically
the new C(...) construct which generates an object from a class C. JPF cur-

rently generates statically sized global PROMELA arrays that hold the state of

the objects, causing wasted memory when only few objects are allocated while

the arrays are initialized to hold a larger number. In addition to wasted mem-
ory, a second problem with this array solution is the intricate name resolution

machinery required to search for the right array when looking up variables. This

is caused by the class subtyping in JAVA (polymorphism), where the class of

an object cannot be statically decided. Consider for example a method taking

a C object as parameter. It can be applied to any object of any subclass of C.

As a consequence, variable lookups consist of conditional expressions searching
through the subclasses. A related issue is the lack of variables local to "methods"

in PROMELA. Macros have no concept of locality, leading to further machinery
in the translation of variables local to JAVA methods.

The translation of JAVA exceptions is quite sophisticated, handling all the

special circumstances possible. Gerard Holzmann helped in providing a new
semantics of PROMELA'S unless construct, but even in that case the translation
is "clever".

JPF does not handle all of JAVA, major substantial omissions being recursion,

strings and floating point numbers. Recursion requires more elaborated modeling
of the Java Virtual Machine, for example in terms of a call stack, which however

will be costly. Alternatively PROMELA'S process concept can be used to model

recursive methods, but this solution appears to be time inefficient. It was tried,

but undocumented, in the work described in [12].

The translation does not cater for garbage collection. Normally garbage col-
lection (or the lack thereof) is hidden from the programmer, and should not ef-

fect the functionality of a program. However, the effectiveness of the verification

may be improved by regarding states with garbage equivalent to states without

garbage. Garbage collection seems absolutely non-trivial to handle though.

A generalquestionis whethertranslatingfroma highlevelsourcelanguage
like JAVAto a highleveltargetlanguagelikePROMELAisanadvantagewhen
thetwolanguagesdonot fit exactly.Anexampleis the"clever"translationof
exceptions.AlternativelyonecanconsidertranslatingJAVAbytecodeinstead.
Thiswouldhavethemeritthatpossiblythetranslationwouldbesimpler,and
potentiallymorereliablesinceeachtranslationrulewouldbe "simple"andlo-
cal.Thedisadvantagemightbethat verificationat thebytecodelevelwill be
inefficientdueto thefinergrainatomicityofbytecode.

SPIN wa_ chosen as target system due to its high level programming language
like notation, its dynamic process creation construct, and its focus on an inter-

leaved process model. Since the source and target languages do not fit exactly,

the advantage of a high level target language is slightly smaller than expected.

Other model checkers may be applicable, such as SMV [16] and MUaPHI [17].
However, SPIN's dynamic process creation and interleaved process model, with
efficient verification algorithms for this model, seems to be of value.

Compositional Approaches An alternative solution to deal with scalability
is compositional model checking [21], where only smaller portions of code are

verified at a time, assuming properties about the "rest of the code", and where

the results are then composed to deduce the correctness of larger portions of
code. This approach is not problem free though since composing proofs is non-

trivial and often requires iteration as does induction proofs (no silver bullet

around). A practical solution is so-called unit testing where a class or a small

collection of classes are tested by putting them in parallel with an aggressive

environment. The Remote Agent analysis presented in Section 3 is an example
of this. It's likely that model checking at least can play an important role in
program verification at this level.

6 Discussion

In order to make model checking of programs scalable, program abstraction

needs to be better understood, and supported with automated tools. It's likely

that such abstraction environments will be user guided. One can imagine special

programming styles, design patterns, and program annotations that would sup-
port the abstraction activity. Especially object orientation could become useful

in that data (to be abstracted) are defined together with their methods (to be
changed as a result of the abstractions). Furthermore, model checkers need to

deal explicitly with such issues asdynamic memory allocation, object references,
and garbage collection.

Even in the current situation, where abstraction tools are not available, we

believe that model checking is ready for unit testing of programs, giving the
programmer a chance to put his sub programs (classes) under more "stress"

than otherwise possible with testing. The Remote Agent example in Section 3
illustrates this approach.

Jev is a prototype, and future work at NASA Ames as well as at Stanford

will consist of building more efficient model checking technology for JAVA. At

this end, we study byte code verification as well as source code verification. Fur-

thermore, work is focusing on program abstraction with the purpose of building

an integrated program verification environment.

Acknowledgments

The authors wish to acknowledge the following persons at NASA Ames for their

contributions in terms of ideas and support: Tom Pressburger, Mike Lowry, John

Penix and Willem Visser. At Stanford we would like to thank David Dill for

discussions and comments. The second author is sponsored by NASA contract

number NAG2-891: An Integrated Environment for Efficient Formal Design and

Verification.

References

1. S. Berezin, A. Biere, E. Clarke, and Y. Zhu. Combining symbolic model

checking with uninterpreted functions for out-of-order processor verification. In

G. Gopalakrishnan and P. Windley, editors, Formal Methods in Computer-Aided

Design (FMCAD), volume 1522 of LNCS, pages 369-386, CA, November 1998.

Springer-Verlag.

2. J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequenti',d circuit ver-

ification using symbolic model checking. In 27th ACM/IEEE Design Automation

Con/erence, 1990.

3. R. Iosif C. Demaxtini and R. Sisto. Modeling and Validation of Java Multithreading

Applications using SPIN. In Proceedings of the ,_th SPIN workshop, Paris, France,

November 1998.

4. T. Cattel. Modeling and Verification of sC++ Applications. In Proceedings of

the Tools and Algorithms for the Construction and Analysis o/ Systems, Lisbon,

Portugal, LNCS 1384., April 1998.

5. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-

state concurrent systems using temporal logic specifications. A CM Transactions

on Programming Languages and Systems, 8(2):244-263, 1986.

6. J. C. Corbett. Constructing Compact Models of Concurrent Java Programs. In

Proceedings of the ACM Sigsoft Symposium on Software Testing and Analysis,

Clearwater Beach, Florida., March 1998.

7. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. ACM

Symposium on Principles of Programming Languages, pages 238-252, 1977.

8. P. Godefroid. Model checking for programming languages using verisoft. In ACM

Symposium on Principles of Programming Languages, pages 174-186, Paris, Jan-

uary 1997.

9. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. The Java

Series. A-W, 1996.

10. S. Graf and H. Saidi. Construction of abstract state graphs with pvs. In CAV.

Springer-Verlag, June 1997.

11. J. Hatcliff, M. Dwyer. S. Laubach, and D. Schmidt. Stating static analysis using

abstraction-based program specialization, 1998.

